Search results for " Metric geometry."

showing 10 items of 104 documents

Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm

2011

We construct geodesics in the Wasserstein space of probability measure along which all the measures have an upper bound on their density that is determined by the densities of the endpoints of the geodesic. Using these geodesics we show that a local Poincar\'e inequality and the measure contraction property follow from the Ricci curvature bounds defined by Sturm. We also show for a large class of convex functionals that a local Poincar\'e inequality is implied by the weak displacement convexity of the functional.

Mathematics - Differential GeometryPure mathematicsGeodesicPoincaré inequalityMetric measure spaceCurvature01 natural sciencesConvexitysymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsRicci curvatureMathematicsProbability measure010102 general mathematicsta111Measure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMetric spaceRicci curvatureDifferential Geometry (math.DG)Poincaré inequalityBounded functionsymbolsMathematics::Differential GeometryAnalysisAnalysis of PDEs (math.AP)
researchProduct

Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces

2015

We show that the Heisenberg group is not minimal in looking down. This answers Problem 11.15 in `Fractured fractals and broken dreams' by David and Semmes, or equivalently, Question 22 and hence also Question 24 in `Thirty-three yes or no questions about mappings, measures, and metrics' by Heinonen and Semmes. The non-minimality of the Heisenberg group is shown by giving an example of an Ahlfors $4$-regular metric space $X$ having big pieces of itself such that no Lipschitz map from a subset of $X$ to the Heisenberg group has image with positive measure, and by providing a Lipschitz map from the Heisenberg group to the space $X$ having as image the whole $X$. As part of proving the above re…

53C17 22F50 22E25 14M17General MathematicsSpace (mathematics)Heisenberg group01 natural sciencesMeasure (mathematics)Image (mathematics)Set (abstract data type)Ahlfors-regular distancesMathematics - Metric Geometry53C170103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric GeometryMathematics (all)22E250101 mathematicsMathematicsDiscrete mathematicsmatematiikkamathematicsMathematics::Complex Variables010308 nuclear & particles physicsta111010102 general mathematicsMetric Geometry (math.MG)Lipschitz continuityMetric spaceMathematics - Classical Analysis and ODEsBounded function14M17; 22E25; 22F50; 53C17; Mathematics (all)14M1722F50
researchProduct

Universal infinitesimal Hilbertianity of sub-Riemannian manifolds

2019

We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.

Mathematics - Differential GeometryMetric Geometry (math.MG)Sobolev spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisRiemannin monistotdifferentiaaligeometriasub-Finsler manifoldMathematics - Metric GeometryDifferential Geometry (math.DG)infinitesimal hilbertianityFOS: MathematicsMathematics::Metric Geometrysub-Riemannian manifoldMathematics::Differential GeometrymonistotfunktionaalianalyysiMathematics::Symplectic Geometry53C23 46E35 53C17 55R25Analysis
researchProduct

Sharp estimate on the inner distance in planar domains

2020

We show that the inner distance inside a bounded planar domain is at most the one-dimensional Hausdorff measure of the boundary of the domain. We prove this sharp result by establishing an improved Painlev\'e length estimate for connected sets and by using the metric removability of totally disconnected sets, proven by Kalmykov, Kovalev, and Rajala. We also give a totally disconnected example showing that for general sets the Painlev\'e length bound $\kappa(E) \le\pi \mathcal{H}^1(E)$ is sharp.

Pure mathematicsMathematics - Complex VariablesGeneral MathematicsBoundary (topology)accessible pointsMetric Geometry (math.MG)31A15Domain (mathematical analysis)inner distancePlanarMathematics - Metric GeometryPrimary 28A75. Secondary 31A15Bounded functionTotally disconnected spaceMetric (mathematics)FOS: Mathematics28A75Hausdorff measureComplex Variables (math.CV)Painlevé lengthMathematics
researchProduct

Failure of topological rigidity results for the measure contraction property

2014

We give two examples of metric measure spaces satisfying the measure contraction property MCP(K,N) but having different topological dimensions at different regions of the space. The first one satisfies MCP(0,3) and contains a subset isometric to $\mathbb{R}$, but does not topologically split. The second space satisfies MCP(2,3) and has diameter $\pi$, which is the maximal possible diameter for a space satisfying MCP(N-1,N), but is not a topological spherical suspension. The latter example gives an answer to a question by Ohta.

Mathematics - Differential Geometrymetric measure spacesGeodesicPhysics::Instrumentation and DetectorsQuantitative Biology::Tissues and Organsmeasure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Ricci curvature lower boundsTopologyPotential theorymaximal diameter theoremnonbranchingRigidity (electromagnetism)Mathematics - Metric GeometryDifferential Geometry (math.DG)splitting theoremFOS: MathematicsSplitting theoremContraction (operator theory)AnalysisMathematicsgeodesics
researchProduct

Cheeger-harmonic functions in metric measure spaces revisited

2013

Let $(X,d,\mu)$ be a complete metric measure space, with $\mu$ a locally doubling measure, that supports a local weak $L^2$-Poincar\'e inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on $(X,d,\mu)$. Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.

Mathematics - Differential GeometryMathematics - Analysis of PDEsDifferential Geometry (math.DG)Mathematics - Metric GeometryFOS: MathematicsMetric Geometry (math.MG)Analysis of PDEs (math.AP)
researchProduct

Duality of moduli in regular toroidal metric spaces

2020

We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation of the work of the author and Rajala [12] on the corresponding duality in condensers. peerReviewed

30L10 30C65 28A75 51F99Pure mathematicsmetric spacesToroidDuality (optimization)torusMetric Geometry (math.MG)TorusArticlesmetriset avaruudetModulifunktioteoriaMetric spaceContinuationMathematics - Metric GeometrymodulusFOS: MathematicsdualitymittateoriageometriaMathematics::Symplectic GeometryMathematicsAnnales Fennici Mathematici
researchProduct

Singular integrals on regular curves in the Heisenberg group

2019

Let $\mathbb{H}$ be the first Heisenberg group, and let $k \in C^{\infty}(\mathbb{H} \, \setminus \, \{0\})$ be a kernel which is either odd or horizontally odd, and satisfies $$|\nabla_{\mathbb{H}}^{n}k(p)| \leq C_{n}\|p\|^{-1 - n}, \qquad p \in \mathbb{H} \, \setminus \, \{0\}, \, n \geq 0.$$ The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel $k(p) = \nabla_{\mathbb{H}} \log \|p\|$. We prove that convolution with $k$, as above, yields an $L^{2}$-bounded operator on regular curves in $\mathbb{H}$. This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all …

Applied MathematicsGeneral Mathematics42B20 (primary) 43A80 28A75 35R03 (secondary)Metric Geometry (math.MG)Singular integralLipschitz continuityuniform rectifiabilityHeisenberg groupFunctional Analysis (math.FA)ConvolutionBounded operatorMathematics - Functional AnalysisCombinatoricsMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded functionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupsingular integralsBoundary value problemKernel (category theory)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Geometry and analysis of Dirichlet forms

2012

Let $ \mathscr E $ be a regular, strongly local Dirichlet form on $L^2(X, m)$ and $d$ the associated intrinsic distance. Assume that the topology induced by $d$ coincides with the original topology on $ X$, and that $X$ is compact, satisfies a doubling property and supports a weak $(1, 2)$-Poincar\'e inequality. We first discuss the (non-)coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that the Ricci curvature of $X$ is bounded from below in the sense of Lott-Sturm-Villani, the following are shown to be equivalent: (i) the heat flow of $\mathscr E$ gives the unique gradient flow of $\mathscr U_\infty$, (ii) $\mathscr E$ satisfies the Ne…

Mathematics(all)General MathematicsPoincaré inequalityMetric measure space01 natural sciencesMeasure (mathematics)Length structuresymbols.namesakeMathematics - Metric GeometrySierpinski gasketGradient flowClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsRicci curvatureHeat kernelMathematicsDirichlet formProbability (math.PR)010102 general mathematicsMathematical analysista111Differential structureMetric Geometry (math.MG)Functional Analysis (math.FA)Sierpinski triangleMathematics - Functional Analysis010101 applied mathematicsRicci curvatureMathematics - Classical Analysis and ODEsPoincaré inequalityBounded functionsymbolsBalanced flowDirichlet formIntrinsic distanceMathematics - ProbabilityAdvances in Mathematics
researchProduct

Rescaling principle for isolated essential singularities of quasiregular mappings

2012

We establish a rescaling theorem for isolated essential singularities of quasiregular mappings. As a consequence we show that the class of closed manifolds receiving a quasiregular mapping from a punctured unit ball with an essential singularity at the origin is exactly the class of closed quasiregularly elliptic manifolds, that is, closed manifolds receiving a non-constant quasiregular mapping from a Euclidean space.

Unit sphereEssential singularityClass (set theory)Pure mathematicsmath.CVMathematics - Complex VariablesMathematics::Complex VariablesEuclidean spacemath.MGApplied MathematicsGeneral MathematicsPrimary 30C65 Secondary 53C21 32H02010102 general mathematics16. Peace & justiceMathematics::Geometric Topology01 natural sciencesRescaling010101 applied mathematicsQuasiregular mappingMathematics - Metric GeometryIsolated essential singularities111 MathematicsGravitational singularity0101 mathematicsMathematicsProceedings of the American Mathematical Society
researchProduct